

REstoring rivers FOR effective catchment Management

REFORM: Towards the development of tools to support cost-effective implementation of restoration measures and monitoring

IAIN GUNN (CEH Edinburgh)

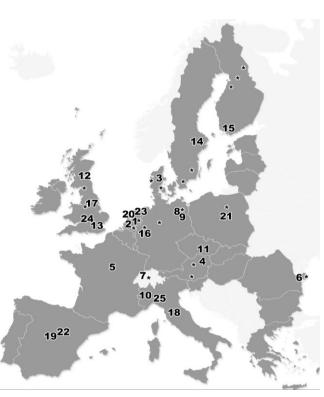
COLLABORATIVE PROJECT LARGE SCALE INTEGRATING PROJECT

ENV.2011.2.1.2-1 HYDROMORPHOLOGY AND ECOLOGICAL OBJECTIVES OF WFD

GRANT NO. 282656

Contact: Tom Buijse (e-mail: tom.buijse@deltares.nl)

Contents


- Background
- Overall aims of REFORM
- Research aims
- Application of research
- Dissemination of research
- Links with RESTORE and other projects

Partners

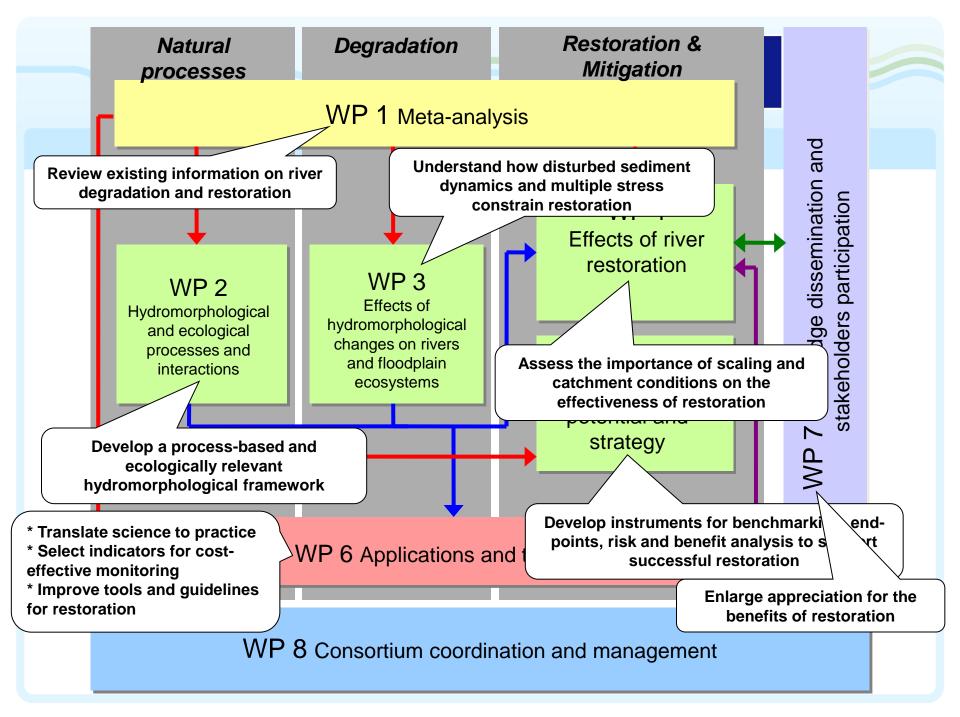
25 partners from 14 European countries

NI.	Participant conscioning cons	Olt	0
No.	Participant organisation name	Short name	Country
		name	
1	Stichting Deltares (Coordinator)	Deltares	Netherlands
2	Stichting Dienst Landbouwkundig Onderzoek B.V. – Alterra	Alterra	Netherlands
3	Aarhus University – National Environmental Research Institute	AU-NERI	Denmark
4	Universitaet fuer Bodenkultur Wien	BOKU	Austria
5	French Research Institute for agricultural and environmental engineering	Cemagref	France
6	Danube Delta National Institute for Research & Development	DDNI	Romania
7	Swiss Federal Institute of Aquatic Science and Technology	Eawag	Switzerland
8	Ecologic Institut gGmbH	Ecologic	Germany
9	Leibniz-Institute of Freshwater Ecology and Inland Fisheries	IGB	Germany
10	European Commission Joint Research Centre	JRC	Italy
11	Masaryk University	MU	Czech Republic
12	Natural Environment Research Council – Centre for Ecology & Hydrology	NERC-CEH	UK
13	Queen Mary, University of London	QMUL	UK
14	Swedish University of Agricultural Sciences	SLU	Sweden
15	Finnish Environment Institute	SYKE	Finland
16	University of Duisburg-Essen	UDE	Germany
17	University of Hull	UHULL	UK
18	Università di Firenze	UNIFI	Italy
19	Universidad Politécnica de Madrid	UPM	Spain
20	VU University Amsterdam, Institute of Environmental Studies	VU-IVM	Netherlands
21	Warsaw University of Life Sciences	WULS	Poland
22	Centro de Estudios y Experimentacion de Obras Publicas	CEDEX	Spain
23	Dutch Government Service for Land and Water Management	DLG	Netherlands
24	Environment Agency of England and Wales	EA	UK
25	Istituto Superiore per la Protezione e la Ricerca Ambientale	ISPRA	Italy

Kick – off meeting (Florence, 28 Nov – 1 Dec 2011)

Overall aims of REFORM

To provide a framework


- improve <u>success</u> of HYMO restoration measures
- to reach <u>cost-effective</u> ecological targets of rivers

Success = HYMO sustainable, Ecol effective, and Socio-Economic potential

Cost-effective = optimisation of ecosystem health, goods and services

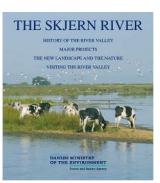
Thus REFORM will develop protocols and procedures

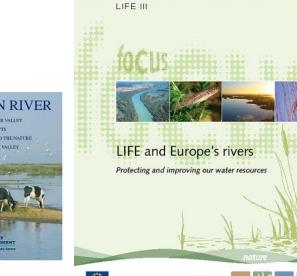
- to <u>monitor</u> biological response to HYMO change with <u>greater</u> precision
- to <u>support</u> the design of <u>PoM</u> for the WFD, in particular the <u>2nd</u> <u>RMBPs</u> (2015)
- to <u>integrate</u> restoration better with <u>socio-economic</u> activities.

REstoring rivers FOR effective catchment Management

WP 1: Reviewing existing information on river degradation and restoration

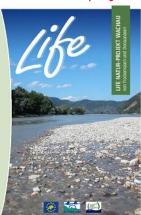
Examples of EU funded River restoration projects


AWARD	
VERNETZUNG DONAU - Y web site in GERMAN Language or in ENCLISH Language	F
	F V
	S


http://www	life-dona	au-vhhsat/

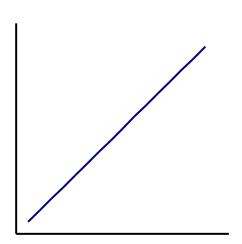
	Count of ProjectName	Programme		
	Global objective	INTERREG LIFE		Grand Total
7	Flood management	20	1	21
101	Integrated River Basin Management	26	1	27
	River & floodplain restoration	17	114	131
00	Water quality improvement	4	1	5
30	Species conservation and management	14	55	69
	Grand Total	81	172	253

http://webarchivenationalarchiv esgovuk/20110303155229/http: /wwwstreamlifeorguk/



http://wwwlifewachauat/

http://wwwhammde/lifelipp eauehtml



WP 1: Review on effects of hydromorphology on biotic interactions

•Various concepts reduced to the very basics – over-simplification or way forward?

Variability of Habitat Depth Width Substrate Structures Flow

species, species diversity abundance, density

= general, unspecific indicators

Key factor flow velocity

- limits habitat use
- sorts substrates,
 provides substrate
 for specialized
 species
- = specific indicators(in limited numbers)



WP2: Developing a process-based hydromorphological framework

- Set HYMO assessments into a process-based framework (process management particularly important for high energy rivers) to reflect river dynamics
- Riverine landscapes structured by interplay of HYMO processes, geology & vegetation structure
- Processes essential to rejuvenate channels, riparian zones and floodplains
- Distinguish spatial and temporal scales to explain river physical appearance & functioning

WP2: Process-based framework for hydromorphology

The Framework will:

Guide users on information required at different spatial scales

How to collect or estimate How to describe and explain variation in river character and behaviour.

Predict how a reach might react to changes

assessed

e.g. Removal of engineering modifications Flow regime re-naturalisation Reinstatement of sediment supply

Form the basis to define site-specific, "reference" conditions
 Against which present-day hydromorphological condition can be

WP 3: Effects of HYMO change on river & floodplain ecosystems

- Assessing the impact of HYMO pressures on river biota
 - Including altered sediment dynamics
 - Analysing existing data sets from across Europe
- Better understanding of how biotic indicators of HYMO pressures respond in multiple-pressure environments
 - Experimental and water quality modelling work

WP 4: Case studies: "Flagship" restoration vs. "normal" restoration

Catchment with large restoration measure(s)

Catchment without large restoration measure(s)

(Long) restored reach

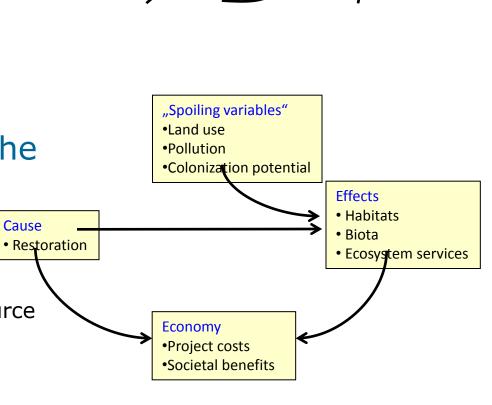
Degraded reach upstream

Short restored reach

Degraded reach upstream

REFORM makes use of existing data.

Besides additional new data will be collected in 9 catchments


WP 4: Restoration scale and catchment conditions

Do dimensions influence restoration success?

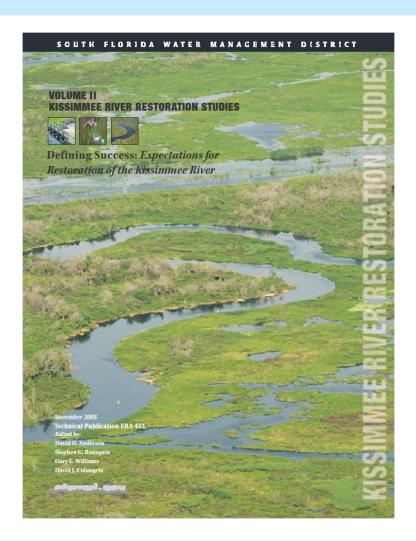
Do catchment conditions support or constrain restoration and direct the choice of measures?

- Flow regimes of water and sediments
- Barriers
- Colonisation potential from source populations
- Water and sediment quality (nutrients, micropollutants)

WP 5: Benchmarking, end-points

There is a need to benchmark when restoration is successful.

There is a need to set realistic endpoints for restoration


. . .

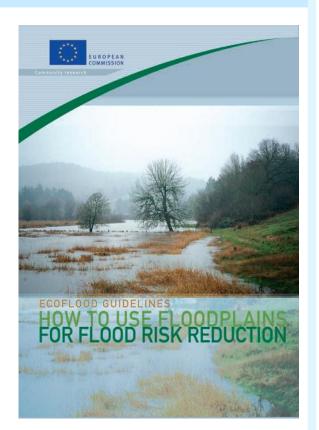
This is however often not done

THE CHALLENGE OF PROVIDING ENVIRONMENTAL FLOW RULES TO SUSTAIN RIVER ECOSYSTEMS

Angela H. Arthington, Stuart E. Bunn, N. LeRoy Poff, and Robert J. Naiman

Ecological Applications 2006 16:4, 1311-1318

WP 5: Synergy between ecological restoration and

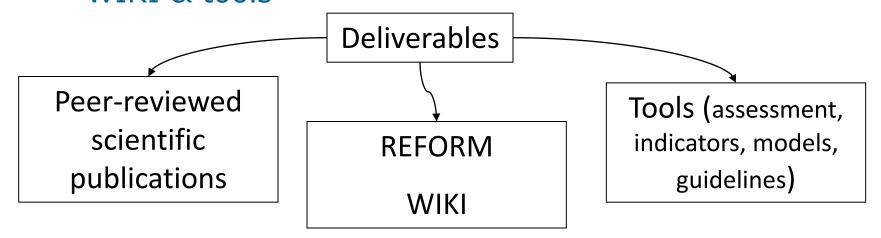

- Flood protection (Room for Rivers, Ecoflood)
- Navigation (parallel dams; wave action)
- Agriculture (land use of riparian zones; sediment dynamics)
- Hydropower (Environmental flows; hydropeaking)

To ...

Expand the potential for restoration

Support the intercalibration of Good

Ecological Potential of heavily modified and artificial water bodies (ECOSTAT)



Deliverables - > publications, WIKI & Tools

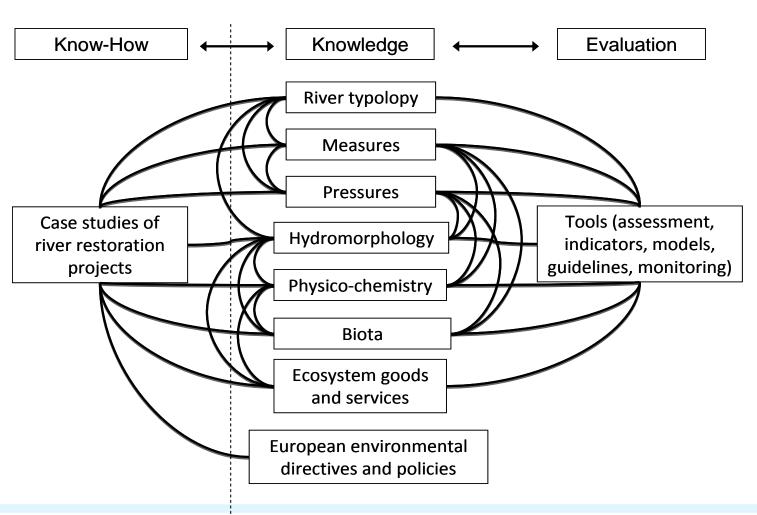
- Deliverables = formal reporting of results
- Accessible and Ready for Use = publications,
 WIKI & tools

REFORM WIKI

Open Access
Web-based
Knowledge
Management System

Expansion of the FORECASTER WIKI (2008 – 2010)

WIKI to give end-users access to results of REFORM



REFORM WIKI

Open source web-based knowledge management system

WP 7: Interaction with end-users

Communication & Dissemination Strategy (March 2012) End-user groups: policy makers, practitioners, scientists Standard

Website, Newsletters (2/yr), Policy Briefs
 (3)

Advanced

- WIKI linking theory to practice and experience
- Interactive preparation of end-user workshop
- Interaction with ECOSTAT

Events

- interactive end-user workshop (Feb/Mar 2013)
- local workshops in case study catchments (tbd)
- summer school (2015)
- final conference (2015)

Target groups

- General Public
- Universities
- NGOs

Target groups

- River Basin Planners
- Environmental Agencies
- Policy Makers

Tools

- Website
- Newsletter
- Scientific Paper

Tools

- Policy Briefs
- Stakeholder Workshop

REFORM

Consultatio

Wiki River Restoration

Cooperation with ...

make use of earlier research projects (e.g. REBECCA, WISER, FORECASTER)

RESTORE (LIFE+ Information & Communication)

European Centre for River Restoration (ECRR)

WFD Implementation: ECOSTAT common implementation strategy (CIS)

Gary Brierley, Johan Kling, Margaret Palmer, Hervé Piégay, Peter Pollard, Ursula Schmedtje, Bas van der Wal

Advisory Board of REFORM

Thank you for your attention

www.reformrivers.eu

Stay informed: register to our newsletter on the website

